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Introduction

� Impact e.g. on top quark mass:

� important constraint for Higgs boson (together with W mass)

� requires JES determination (top decay products)

� JES uncertainties ~5 GeV/c2 (early Run II) → ~2 GeV/c2  (now)

� total uncertainties:  2.6 GeV/c2 (current best measurement)

� CDF Run-II goal: < 2GeV/c2

... despite improvements, JES uncertainty still dominated 
by data / calorimeter simulation discrepancies

� Many aspects of the CDF physics program crucially depend on the correct determination 
of the jet energy scale (JES).

� The CDF calorimeter simulation is one of the keys to control the CDF JES systematics...
... continuously improved during Run II.

� This talk presents the status quo effective for current CDF publications and reports 
about ongoing activities to contribute to the Run-II challenge.
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The CDF Calorimeter

� Sampling calorimeter:
- scintillating tiles + WLS
- lead/iron absorbers
- projective tower geometry 

� Divided in Central / Wall / Plug part  Central HAD

 Plug HAD

 Plug EM

 Wall HAD

� Pseudorapidity coverage: |η| < 3.6

� Granularity: 24(48) wedges per ring

� Also shower maximum / pre-shower detectors

 Central EM

tracking system
(COT)

vertex detector
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CDF Calorimeter Simulation

� encodes detector geometry/material composition

� propagates particle from interaction point through 
detector volume  up to first inelastic interaction

                                  G.Grindhammer, M.Rudowicz and S. Peters, NIM A290 (1990) 469

� fast simulation of electromagnetic and hadronic showers 
(used by H1 Coll. since the early 90's, LAr Calorimeter) 
- in CDF up to 100 times faster than detailed G3 shower
- ideal for simple geometry with repetitive sampling structure
- very robust, sophisticated and flexible (tunable)

� generates longitudinal and lateral shower profile

� distributes energy spots according to lateral profile and
sampling fluctuations

� uses GEANT material/geometry information

 control passed to ...

CDF Run II simulation is based on GEANT3

GFLASH

 CPU time increases with E
 GEANT ∝ E;  
  GFLASH ∝ log(E)
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GFLASH in a Nutshell
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� GFLASH treats calorimeter as one single effective medium.
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� EM and HAD responses are related to response of minimum ionizing particles (MIP).
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Longitudinal Shower Profile
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Lateral Shower Profile

T

<

r

= > 2 r R0
2

<

r2 ? R0
2 =2

@

R0

A

E , z

BC D E R1

F A R2

G R3 log E

B

z

Hn

I

R0

J

E , z

K

L

R0

J

E , z

KM N O JS1

PS2 log E

K J

S3

Q S4 z

K R2

S R0: log-normal distribution 
(in units of Moliere radius or absorptions lengths)

S paramerization for mean and width:

Integrated Lateral Profile

7 parameters

S photons, electrons: n=2;  hadrons: n=1

S hadronic showers: linear dependence on shower depth 

S logarithmic dependence on incident particle energy
; r: radial distance 

from shower center

r

shower depth z
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CDF Tuning Procedure

1) MIP peak:

S adjust the response of minimum ionizing particles in the EM calorimeter

S fixed using 57 GeV/c test beam data
2) Hadronic energy scale:

S adjust  the shape of the individual responses (EM and HAD), the sum of both (TOT) 
and the hadronic response of particles in the HAD calorimeter appearing MIP-like in 
the EM (EM<670MeV) 

S fixed using 57 GeV/c test beam data
3) Energy dependence:

S interpolate energy dependence e.g. using 〈E/p〉 response

S all available test beam data plus Run-II data (added later)
4) Lateral profile:

S adjust 〈E/p〉 profile in EM and HAD calorimeter

S Run-II data only

... will mainly focus on hadronic response
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1) MIP Peak 

Central

PEM Energy [GeV]
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S MIP response theoretically well understood

S charge collection efficiencies

S serves as reference for other responses

Plug

reproduce mean and
width of MIP response
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Muon Response

... tuned later during Run II:

S Low p muons tuned using 
J/ψ → µ+µ−

S High p muons tuned with 
W → µν
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2) Hadronic Energy Shape

MIP TOT

HAD EM

MIP TOT

HAD EM

S Iterative procedure to find reasonable parameter set (underconstraint problem)

57 GeV pion test beam
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3) Energy Dependence

S Many longitudinal details are fixed using 57 GeV pion test beam data.

S Energy dependence adjusted using all available test beam data sets:
Central: 7-227 GeV/c,  Plug: 9-231 GeV/c

fraction of deposited energy

f
\

E
]_^ a ` b tanh

\

c log E ` d ]

test beam

first Run-II point
(more points added later)

π0 FEDP

E/p distributions (Central)
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E/p Test Beam Data

S Different parametrizations for Central/Wall/Plug
- different sampling structures and passive material effects 

S CDF has recently improved tuning using in-situ data (next page)
- more direct control of parameters independent on test beam

E/p mean

E/p width

Central Plug
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In-Situ Tuning Approach

S Run-II tuning is based on the response of single charged 
particles in EM and HAD tower blocks (plot)

S Selection of single isolated (7x7 tower blocks) high quality 
tracks.

S MinBias data, later also jet calibration and special single 
track trigger data.

S MC: usually single particle gun (flavor mixture + background 
modeling)

  X  extrapolated track impact point

X X

φ

η

EM HAD

        signal background

Signal:  2x2 (EM)    3x3 (HAD)
Backg:  2∗far strip  3∗far strip

far strip

minbias minbias 

single 
track 
trigger 

Central Plug

S Single track triggers developed 
with thresholds up to 15 GeV/c.

S Extension of single track analysis 
from 5GeV/c (early Run-II) up to 
40 GeV/c (now)
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High P Response (Central)

S Significant gain of control in situ up to 40GeV/c 
(in Plug up to ~20GeV/c).

S Single track analysis continuously improved 
during Run-II.

S Verification/replacement of test beam data.initial Run-II tuning

 

early Run-II now

a dataa MC

10 20

〈E/p〉



17Pedro A. Movilla Fernandez (LBNL) CALOR 2006, Chicago, USA

4) Lateral Profile
X

  X  extrapolated track impact point

ηrel
1 5-1-3

φrel

backg

backg

signal

Signal: 1x3 strips (ηxφ)
Backg: 3/2∗(both side φ towers)

-5 3

brelc bd e bmax f bmin gh 2e bmaxd bmin gh 2

S Measure 〈E/p〉 in 5 towers adjacent in η.
...signal = target tower strip + 2 adjacent towers strips in φ.

S Define relative η coordinates normalized to tower bounderies
→ experimental profile 〈E/p〉 (ηrel)  (plot)
...useful observable sensitive to lateral profile parameter R0:

i

R0

j

E inc , z

kl m n R1

o j R2

p R3 ln E inc

k

z

qn

}

core term R1 spread term Q
- shower depth
- incident particle energy

〈E/p〉

Systematic tuning approach:

r Scan (R1,Q) space for different momentum bins and compare with data (χ2).

r HAD and EM calorimeter probe different parts of the hadronic shower development 
→ helps to constrain R1 and Q at each momentum bin.

r R2 and R3 derived from Q dependence on p using R1 constraint.
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Lateral Profile Scans

EM HAD TOT

r Profiles are normalized to absolute data response 
→ lateral tune in first order decoupled from longitudinal profile details.

20 GeV profile

EM HAD
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Lateral Profile Tune (Central)

r Consistent global tuning of lateral profile 
in Central up to 40 GeV/c and in Plug up 
to 20 GeV/c.

r Replaces H1 default parametrization.

r Further work in progress to impose 
tighter constraint at low momenta...

shower core

shower spread
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Plug/Wall Response
PlugWall

Central
90°sut pT

probe

pT
trigger

swv t p jet

p

v

r Inhomogeneous calorimeter response:
- cracks (passive material) between Wall and Plug
  and the two halves of Central
- different sampling structure in Plug 

r Di-jet balancing technique corrects for 
imperfections in data and simulation (β)
- response in Central is better understood
- energy of non-central jet (“probe”) is recalibrated
  using central jet (“trigger”, 0.2<|η|<0.6)

r Photon-jet balancing: monitors corrected jet 
energies using photon energies as reference (β

γ
)

r Tuning is reproducing detector particularities 
along η.

r Work in progress to further improve picture 
(Plug, high jet p

T
)... β

γ
-1

di-jet balance

γ-jet balance

 cracks
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1-2%

Simulation Performance

2% 3% 4%

r Early Run-II picture (above) currently 
imprinted into ongoing CDF publications.
- in-situ tuning up to 5 GeV/c
- reasonable performance, but in-situ validation 
  at higher p (red points) limited by statistics

r Percentages directly translate into JES 
uncertainties (next page).

MC performance effective for current CDF publ.
early Run-II now

∆〈E/p〉

r Steadily increased in-situ single track data 
statistics.

r Better and more consistent tuning.
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Jet Energy Scale Uncertainties

r Major part of MC/data difference enter JES uncertainties 
through “absolute jet energy corrections”:
...relates bunch of calorimeter towers within a cone (“jets”)
  to the “true” momenta of the underlying particles.

r Crucial for almost all physics analyses in CDF...

E/p (p)  (MC)

∆(E/p) (p)

calorimeter simulation

MC performance for recent CDF publications 
convolution with 
particle spectrum
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CDF Total JES Uncertainty

r Calorimeter simulation uncertainties still dominant.

“Absolute jet energy scale”:

x simulated E/p response 

“Out-of-Cone”:

x MC/data energy flow mismatch 
outside the jet cone 

x direct contribution from lateral 
profile (leakage effects at cone   
boundaries)

MC performance for recent CDF publications

“Relative”:

x contribution from imperfection 
of Plug/Wall simulation
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Conclusions

y GFLASH has proved to be a fast, flexible and improvable tool to simulate 
electromagnetic and hadronic showers in the CDF calorimeter

y Central calorimeter data/MC discrepancy effective for ongoing CDF publications:
 hadronic charged particle response: 2-4%
 electron response: 1-2% (not covered by this talk)      

y MC improvements successfully contributed to CDF physics program through 
reduction of JES systematics.

y We are good but need to get better ...

For more details, see accepted NIM paper:  “Determination of the Jet Energy Scale at CDF”,  
hep-ex/0510047  (see also Mark Mattson's CDF talk of June 5th for further selected physics results).

excerpt of CDF “best” 
individual top mass 
measurements  
(lepton+jets channel)
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Outlook

y CDF is aiming at <2% in hadronic and <1% in electron response uncertainty
(essential for physics program).

y Ongoing efforts to further improve Plug tuning (background effects, track quality) 
and simulated e.m. responses in cracks between tower wedges.

y In-situ tuning based on newly available single isolated track samples (replacing 
test beam) crucial to overcome all current performance limits.

z consider single track trigger runs (high thresholds) in early LHC run periods

y GFLASH might be a promising simulation tool for LHC experiments (ongoing 
feasibility studies at ATLAS/CMS)

z more flexibility than GEANT

z tunable

z excellent CPU performance



Backup Slides



27Pedro A. Movilla Fernandez (LBNL) CALOR 2006, Chicago, USA

The Tevatron at Fermilab

r Run-I (1992-1996): 
√s=1.8TeV, inst. L. = 1031cm-2s-1, ∫L ~109/pb (CDF) 

r Run-II (since 2001):

{ √s=1.96TeV{ 36 x 36 bunches at 396 ns spacing{ Main Injector & Recycler{ New anti-proton target

r Substantially improved and steadily 
increasing luminosity:

| inst. L.  ~ 14 × 1034cm-2s-1

| ∫ L ~  1.3/fb (CDF March 2006)
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The CDF Detector

Plug Calorimeter

Central Outer Tracker

Silicon Vertex Detector

Muon Chambers

Wall Calorimeter

Solenoid ~1.4T length ~ 14m
height ~ 11m

Central Calorimeter
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Absolute Electron Response

 |φrel|

 |φrel|

~ ~

x Electromagnetic scale is tuned in-situ using electrons from J/ψ 
(low p)or W (high p) decay

x MC – data discrepancy ...
- electrons pointing to inner 0.9x0.9 of target tower: 0.5%
- electrons pointing to φ cracks (WLS, steel bar): 1.6%

x Ongoing efforts to reduce crack mismatch

~~

new map correction

x Monitoring of cracks using electron pairs from Z0 
decays in mass window around mZ0:
- one leg well contained in a central target tower
- probe leg scans φ up to crack
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Plug/Wall Particularities

Silicon/COT tracksSilicon tracks

x Larger interdependence between lateral and longitudinal 
shower profile due to finer segmentation 
→ requires best possible tuning of lateral profile prior to 
tuning absolute response

narrow 
lateral profile

broad 
lateral profile

...effect of resolution folded with minbias spectrum 

x Different sampling structures Plug vs. Central, Wall crack at |η|~1.1 
→ requires region dependent parametrization of  fdep

x Low track reconstruction efficiency, worse track quality
→ Plug tuning using tower groups for which COT tracks are 
available (towers 12-15).


